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Zusammenfassung

Die Ergebnisse neuerer Forschung haben gezeigt, dass das Neutrino kein

masseloses Teilchen ist. Dies macht es notwendig, die Natur des Neutrinos

zu untersuchen. Ziel dieser Arbeit ist es, anzugeben wie viele neutrinolose

doppelte Betazerfall Ereignisse am LHC bei Proton-Proton Kollisionen mit
√
s = 14 TeV sichtbar sind, wenn man einen Type III Seesaw Mechanismus

annimmt. Das Auftreten eines solchen, die Erhaltung der Leptonenzahl ver-

letztenden Prozesses, ist ein Anzeichen für die mögliche Majorana Natur des

Neutrinos.

Um dies zu zeigen wird der Wirkungsquerschnitt eines Kollisionsprozesses

berechnet. Ergebnisse der neuesten Experimente werden erläutert und da-

hingehend untersucht, mit welchen Werten im Rahmen der Annahmen die

größtmögliche Menge an Ereignissen erzielt wird. Die Berechnung des Wir-

kungsquerschnittes für den neutrinolosen doppelten Betazerfall erfolgt mit

MadGraph. Wir haben ermittelt, dass es in der 23 fb−1 großen Sammlung

integrierter Luminosität des LHC von 2012 genau ein solches Ereignis gibt.

Abstract

Current results of research have shown that the neutrino is not a massless

particle. This raises the need to investigate the neutrino’s nature. This thesis’

aim is to provide a number of possible neutrinoless double beta decay events

observable in proton-proton collisions at the LHC running at
√
s = 14 TeV

assuming a Type III seesaw mechanism. The existence of this lepton num-

ber conservation violating signal would yield evidence that the neutrino is a

Majorana particle.

Therefore it is shown how to calculate the cross section of a collision by

hand. Data from recent experiments is stated and discussed in order to

obtain values which leads to the highest possible number of events. The neu-

trinoless double beta decay calculation is conducted using MadGraph. We

conclude that there is one event observable in the LHC’s collection of 23 fb−1

integrated luminosity from 2012.
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1. Introduction 1

1 Introduction

Neutrinoless double beta decay (0νββ) is a very rare process, if even possible. The

purpose of this thesis is to calculate how rare. It will be stated how exactly 0νββ

is possible and which assumptions are necessary for it to happen. This thesis aims

to give a maximum number of events with 0νββ that could be visible at the LHC

with the center-of-mass energy
√
s = 14 TeV.

First, the actual insights on the nature of the neutrino will be discussed in this

chapter. Next, the beta decay will be discussed in more detail. 0νββ is not pos-

sible in the Standard model (SM). This makes it necessary to extend the SM. A

model for the extension will be chosen and explained in the second chapter. In the

third chapter, limits on the double beta decay with neutrinos (2νββ) and 0νββ

half-lives from current experiments will be discussed. Values used in the calcu-

lation will be listed in the same section. The fourth chapter gives an overview

on how to use Feynman rules, followed by the calculation of an example cross

section. This example will be the collision of a u and a d̄ quark to obtain a W

boson. In the last chapter the 0νββ-Feynman diagram is rotated and viewed as

a pp-collider LHC process. Here, the event count that we want to obtain will be

calculated.

1.1 History of neutrinos

In the last decades, several experiments on the fluxes of atmospheric, solar and

reactor neutrinos were conducted and provided evidence on the existence of neu-

trino oscillations. The phenomenon of neutrino oscillation was predicted in 1967

by Bruno Pontecorvo [1]. It states that a neutrino created with a certain lepton

flavour can later be measured with a different one. This is only possible if the

mass and the flavour eigenstates are not the same and non-zero. In quantum me-

chanics an eigenstate denotes one of the characteristic functions of an observable,

here flavour and mass. Hence, it implies that neutrinos have a non-vanishing mass.

However, according to the Standard Model (SM) of particle physics - introduced
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in the 1960s by Glashow, Weinberg and Salam [2] - neutrinos are supposed to be

particles without mass. This is one of the shortcomings of the known model which

makes extensions necessary and thus increases the interest in physics beyond the

SM.

One idea for dealing with the massive neutrino was suggested by Ettore Ma-

jorana in 1937 [3]. As a so-called Majorana particle, neutrinos would be their own

antiparticle. This leads to the existence of processes with violation of lepton num-

ber conservation which would allow phenomena such as the neutrinoless double

beta decay. The nature of the Majorana particle and how it differs from the kind

of particle used to describe neutrinos in the past is explained at the end of this

chapter.

1.2 Beta decay modes

Much more common than 0νββ is the simple beta decay. Beta minus (β−) decay

is a radioactive process where a neutron in an atomic nucleus decays into a proton

and emits an electron and an antineutrino

(A,Z)→ (A,Z + 1) + e− + ν̄e.

Here A is the mass number and Z is the atomic number of the decaying nucleus.

Since two particles are emitted, the energy of the mass excess is allocated randomly

on the electron and the antineutrino. This leads to a continuous spectrum for

measurements of the electron energy. The apparent loss of energy violates the law

of conservation and provided the first evidence for the existence of neutrinos.

An even-even nucleus consists of an even number of protons and an even number

of neutrons. For some of these even-even nuclei where the single beta decay is

energetically forbidden or at least highly suppressed, observation of double beta

decay is possible. Single beta decay has to be suppressed in order to make the

rare 2νββ - depicted in Figure 1 - observable. 2νββ is in essence just two single
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Figure 1: Feynman diagram of 2νββ
Figure 2: Feynman diagram of
0νββ. The × marks the neutrino
annihilation

beta decays in the same nucleus at the same time:

(A,Z)→ (A,Z + 2) + e− + e− + ν̄e + ν̄e.

Of those 35 isotopes known to be capable of double beta decay, only in ten the

decay has been observed experimentally [4, pp.631]. Depending on the isotope

involved, the 2νββ half-lives T
1/2
2νββ vary roughly between 1019 and 1021 years.

These will be specified in section 4.1.

As mentioned before, neutrinos are now known to have a non-vanishing mass.

From this arises the need for new models of physics beyond the SM. Several of the

new models predict that lepton number will not be conserved anymore. If lepton

number conservation could indeed be broken, then double beta decay without the

two neutrinos - depicted in Figure 2 - would be possible:

(A,Z)→ (A,Z + 2) + e− + e−.

The disappearance could be explained by e.g. supersymmetric R-parity violation

[5, p.105] or through adding extra dimensions. Assuming there are no new parti-
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cles or dimensions, the neutrinos’ disappearance could be explained if the neutrino

is a Majorana particle.

1.3 Majorana, Dirac and Weyl

Besides Majorana particles, there are also Dirac and Weyl particles. In the follow-

ing their properties and the differences between them will be discussed, roughly

along the lines of [3]. A crucial difference exists between massive and massless

particles. Massless particles move at the speed of light while massive particles do

not. Before neutrino oscillations indicated a non-vanishing mass, neutrinos were

described by two-component complex spinors, or so-called Weyl spinors. But since

Weyl particles have to be massless, the neutrino cannot be described as a Weyl

particle anymore. Hence, the neutrino has to be either a Dirac or a Majorana

particle.

Dirac particles have four states described by four basic spinors. Two of these

are the left- and right-handed helicity states of a particle pL, pR, the other two

the left- and right-handed helicity states of its antiparticle p̄L, p̄R. Note that the

bar marks the antiparticles. Helicity h is the projection of the spin ~S onto the

direction of momentum p̂ [6, p.240]:

h = ~S · p̂ with p̂ ≡ ~p

|p|
.

A massive particle cannot travel at the speed of light. This means that there can

be a Lorentz boost to a system moving faster than the particle. We imagine a

left-handed (LH) electron eL moving in a certain direction with the speed v < c.

An observer can be boosted along the particle into a system moving faster than

the electron. From his perspective, the electron is seen as right-handed (RH).

Two possible right-handed particles have been introduced, viz eR and ēR. We

now want to distinguish which one the observer sees. Charge is a Lorentz invari-

ant quantity. Since we started with an electron, which has negative charge, the

particle in the boosted system must likewise have negative charge. Hence, it is the

eR. Here, the difference between a Dirac and a Weyl particle becomes obvious. A
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Weyl particle is massless, travels with velocity c and therefore an eL can never be

seen as an eR.

Now we try the same, but this time using a neutrino instead of the electron.

The neutrino is uncharged, so the term antiparticle is more or less not defined.

The only thing left to use for the distinction between νR and ν̄R is the lepton

number. According to the Dirac theory those two are two different particles. As

said in the first section, Majorana proposed a theory where the lepton number

conservation can be violated. Without conserving the lepton number there is no

difference between νR and ν̄R. Thus, according to Majorana’s proposal, the neu-

trino is its own antiparticle [3, pp.51].
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2 Calculating a cross section

In this chapter it will be shown how a cross section is calculated. Therefore we

start with deriving the Feynman rules in the following section. Feynman rules

are a set of rules derived from the Lagrangian. These rules are used to calculate

Feynman diagrams. Feynman diagrams are pictographic descriptions of the be-

haviour of subatomic particles. Afterwards a calculation example is conducted.

For simplification the example does not consist of the entire Feynman diagram of

0νββ [Fig.2]. Instead, we focus on the ’upper’ part. There, a u quark and a d̄

quark collide and produce a W+ boson [Fig.3].

2.1 Feynman rules

The Lagrangian for a scalar field ϕ interacting with the Dirac field ψ is:

L = ψ̄ (iγµ∂µ −m)ψ +
1

2

[
(∂ϕ)2 − µ2ϕ2

]
− λϕ4 + fϕψ̄ψ.

A Dirac field is a fermionic field which describes spin 1/2 particles. A scalar

field gives a certain scalar value to every point in space-time. The symbol γµ

denotes the gamma matrices, four matrices which solve the Dirac equation, the

Schrödinger equation’s analogue in relativistic particle physics. It applies ∂µ =
∂
∂xµ , µ is the mass of the scalar particle ϕ, m is the mass of the Dirac particle ψ

and λ, f are coupling factors. Using this Lagrangian, the Feynman rules are:

1. Every momentum k of scalar particle ϕ is associated with the propagator

i/(k2 −m2 + iε).

2. To make sure we obey the conservation of momentum in the entire diagram

we add the term (2π)4 · δ(4)
(∑

i ki −
∑

j kj

)
. Here ki are the momenta of

all initial particles and kj are the momenta of all final particles.

3. Since the momenta of the inner lines are unknown, they are treated cor-

responding to ordinary perturbation theory. Hence, an integration will be

carried out over all inner lines’ momentum with d4k/(2π)4.
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4. The propagator for initial (incoming) Dirac fermions with momentum k and

spin s is u(k, s), the one for final (outgoing) ones is ū(k, s).

5. Initial antifermions are represented by v̄(k, s) and final antifermions by

v(k, s)

For a massive vector field (bosons) interacting with a Dirac field the Lagrangian

is [7, pp.129]:

L = ψ̄ [iγµ(∂µ − ieAµ)−m]ψ − 1

4
FµνF

µν +
1

2
µ2AµA

µ.

Here A denotes the field and F is the electromagnetic tensor. From this we obtain

the boson propagator for external bosons εµ(k, λ) with the momentum k and the

polarisation λ.

Note that this is not a complete collection of Feynman rules, only those are listed

which are needed in the following.

2.2 Calculating the matrix element of ud̄ → W+

After introducing the Feynman rules we now start with the calculation. As men-

tioned above, a u quark and a d̄ quark collide and produce a W+ boson. As

explained e.g. in the book [7, p.128] we will start with drawing the diagram of the

process we want to calculate and label all lines. In addition to the rules above, a

representation for the vertex is also required. According to [8, p.714] the vertex

for two fermions producing a boson is:

−i g√
2
γµPLVff ′ ,

where PL = 1−γ5
2 is the left-handed chirality projector and Vff ′ is a matrix ele-

ment. The index f denotes fermion. For our u and d̄ quarks this matrix element

becomes Vud = cos θC . The Cabbibo-angle θC describes how quarks can change

their flavour under the weak interaction [9]. The u is an initial fermion, thus it

has the propagator u(p, s). The d̄ is a initial antifermion which leads to v̄(p′, s′)
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Figure 3: Feynman diagram of a u
and a d̄ quark producing a W+ bo-
son

as the propagator. The outgoing W+ boson is represented by ε†µ(k, r). Combined

this yields the matrix element:

M(d̄u→W+) = v̄(p′, s′)

(
−i g√

2
γµPLVff ′

)
u(p, s) ε†µ(k, r)

= −i g√
2

cos θC v̄(p′, s′) (γµPL)u(p, s) ε†µ(k, r).
(1)

In order to obtain the squared matrix element |M|2 =MM† the matrix element

has to be hermitian conjugated:

M† = i
g√
2

cos θC ·
[
ε†µ(k, r)

]†
u(p, s)†(PL)†(γν)†

[
v̄(p′, s′)

]†
. (2)
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For further simplification we use a couple of relations [8, pp.131]:

(γ0)† = γ0 (3)

(γν)† = (γ0γνγ0) (4)

γ0γ0 = γ5γ5 = 1 (5)

v̄† = (vγ0)† = (γ0)†v = γ0v (6)

(PL)† =

(
1− γ5

2

)†
=

(
1
† − (γ5)†

2

)
=

(
1− γ5

2

)
= PL (7){

γµ, γ5
}

= γµγ5 + γ5γµ = 0 (8)

PLγ
0 =

γ0 − γ5γ0

2
=
γ0 + γ0γ5

2
= γ0PR (9)

(PR/L)2 =
(1± γ5)2

4
=
1

2 ± 2γ5 + (γ5)2

4
=

21± 2γ5

4
= PR/L (10)

Using at first the properties (4),(6) and (7) on equation (2) leads to:

M† = i
g√
2

cos θC · εµ(k, r) · u(p, s)†(PL)(γ0γνγ0)(γ0)†v(p′, s′). (11)

Continuing with the identities of the gamma matrices (3), (5) and that the chirality

projector PL behaves like (9) we obtain:

M† = i
g√
2

cos θC · εµ(k, r) · ū(p, s)(PRγ
ν)v(p′, s′). (12)

The initial and the final spins are unknown, so we sum over all possibilities and

average through adding the factor 1
4 (since by summing we count the spins of both

quarks twice, 1
2(foru) · 1

2(for d) = 1
4) to compute |M|2. The following relations

will be used [8, p.132]: ∑
s

u(p, s)ū(p, s) = /p+m (13)∑
s′

v(p′, s′)v̄(p′, s′) = /p
′ −m (14)

∑
r

εµ(k, r)ε†ν(k, r) =

(
kµkν
mW

2
− gµν

)
(15)
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Here the /p denotes the convenient Feynman slash notation /p = γµpµ. The same

averaging and summing is done with the three colors. Thus, we obtain the factor 1
3(

from:
∑

a,b δ
a
b · 1

3(for u) · 1
3(for d) = 3 ·

(
1
3

)2
, where a, b are color indices

)
. Putting

all this together yields the squared matrix element:

|M|2 =
1

12

∑
s,s′,r

∣∣∣MM†∣∣∣ =
1

12

∑
s,s′,r

g2

2
cos2 θC · v̄(p′, s′) (γµPL)u(p, s)

× εµ(k, r)ε†ν(k, r) · ū(p, s)(PRγ
ν)v(p′, s′)

(16)

=
g2

24
cos2 θC

∑
r

εµ(k, r)ε†ν(k, r)
∑
s′

v(p′, s′)v̄(p′, s′) · (γµPL)

×
∑
s

u(p, s)ū(p, s) · (PRγν) . (17)

To make sure that the order within equation (16) is switched correctly, we would

have to write down the spinor indices. This can be checked in [8, p.132]. Here we

just carry out the sums into a trace using (13)-(15).

|M|2 =
g2

24
cos2 θC ·

(
kµkν
mW

2
− gµν

)
· Tr

[
(/p
′ −md̄) (γµPL) (/p+mu) (PRγ

ν)
]
.

(18)

2.3 Traces and γ matrices

In the next step, the quark masses md and mu are set to zero since they are

vanishingly small - a few MeV while the W± boson weighs ∼80 GeV [4] - and we

write out the slash notation /p = γµpµ. Also the relations (7)-(10) are used again
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in the following:

∑
s,s′,r

=
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)
Tr
[
(/p
′ −md̄) (γµPL) (/p+mu) (PRγ

ν)
]

=
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)
Tr
[
(/p
′) (γµPL) (/p) (PRγ

ν)
]

=
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)
Tr
[
(γαpα) (γµPL) (γβpβ) (PRγ

ν)
]

=
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)
(p′αpβ)Tr

[
γαγµPLγ

βPRγ
ν
]

=
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)
(p′αpβ)Tr

[
γαγµγβPRPRγ

ν
]

=
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)
(p′αpβ)Tr

[
γαγµγβPRγ

ν
]

=
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)
(p′αpβ)Tr

[
γαγµγβγνPL

]
=
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)
(p′αpβ)Tr

[
γαγµγβγν

1− γ5

2

]
=
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)(
p′αpβ

2

)(
Tr
[
γαγµγβγν

]
+ Tr

[
γαγµγβγνγ5

])
.

(19)

For the traces of the gamma matrices we have the properties [8, p.134]

Tr
[
γαγβγδγε

]
= 4

(
gαβgδε − gαδgβε + gαεgβδ

)
(20)

Tr
[
γαγβγδγεγ5

]
= −4iεαβδε. (21)

The last term of equation (19) disappears as shown in the following, using trace

property (21). The ε here is called Levi-Civita symbol. It is an - in this case

four-dimensional - antisymmetric pseudo tensor. The Levi-Civita symbol is 1 for

every even index permutation, −1 for every odd permutation and becomes zero

if an index is repeated. Since kµkν = kνkµ and gµν = gνµ apply, and thus are
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symmetric, the following yields zero:

kµkνp
′
αpβε

αµβν = 0 (22)

gµνp
′
αpβε

αµβν = 0 (23)

Inserting trace property (20) in the non-disappearing first part of equation (19)

leads to:

|M|2 =
g2

24
cos2 θC

(
kµkν
mW

2
− gµν

)(
p′αpβ

2

)
4 (gαµgβν − gαβgµν + gανgµβ) (24)

=
g2

12
cos2 θC

(
kµkν
mW

2
− gµν

)(
p′µpν − (p′ · p)gµν + p′νpµ

)
(25)

=
g2

12

cos2 θC
mW

2

(
2(k · p′)(k · p)− (p′ · p)k2 + 2(p′ · p)mW

2
)

(26)

We assume the W+ boson is on shell. This means that we emanate the particle to

be real and therefore it applies that the squared four-momentum vector is equal to

the squared mass, see [7, p.56]. Hence, we set k2 = mW
2 = gµνkµkν and already

cancelled the quark masses to zero. For the squared four momenta of the quarks

this means: p2 = p′2 = 0. From momentum conservation we obtain p + p′ = k.

Using this it can be concluded that:

(p ′ + p)2 = (p′ + p)µ(p′ + p)ν g
µν = 2p′ · p = k2 = mW

2

→ p′ · p = 1/2mW
2 (27)

p2 = 0 = (k − p ′)2 = k2 − 2(k · p′) +��p
′2

→ k · p′ = k · p = 1/2mW
2. (28)

Thereby we finally obtain an expression only depending on constant factors:

|M|2 =
g2

12
· cos2 θC ·mW

2. (29)

So far, this result can be confirmed, see e.g. [10].
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2.4 Partonic cross section σ̂
(
ud̄ → W+

)
Parton is an old expression for the constituents of an hadron, now known as quark.

Thus, a cross section calculation on the partonic level means that we pretend to

collide two solitary quarks instead of the hadrons - protons in our case - we collide

in experiments. For the transition into an experimentally verifiable cross section

we will need parton distribution functions. We will return to this topic later.

In order to derive a cross section from (29), the following general formula from [8,

p.106] is used:

dσ̂ =
1

2EA2EB |vA − vB|
|M|2 (2π)4

∏
f

d3pf
(2π)3

· 1

2Ef

 δ(4)(pA + pB −
∑

pf )

︸ ︷︷ ︸
Γ

.

(30)

The part denoted with Γ is the phase space factor. The phase space is a multidi-

mensional space which represents all states the system can attend. The factor is

needed to average them out. The indices A,B indicate energy and momentum of

the initial particles u and d̄ with their momenta p and p′. The f ’s symbolize all

final particles. Since we have only one final particle, viz the W boson, equation

(30) simplifies to:

dσ̂ =
1

2Ep2Ep′
∣∣vp − vp′∣∣

(
d3k

(2π)3
· 1

2EW

)
|M|2 (2π)4δ(4)(p+ p′ − k). (31)

From [8, p.106] we derive:

1

2Ep2Ep′
∣∣vp − vp′∣∣ =

1

4
∣∣Ep′p− Epp′∣∣ with vi ≡

p̄i
Ei

.

In our case - using now pu and pd for the four momenta of the incoming quarks -

this yields [11, p.64]:

1

4 |Edpu − Eupd|
=

1

4
√

(pu · pd)2 −����m2
um

2
d

=
1

4
√

(pu · pd)2
. (32)
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We continue with inserting pu ·pd = 1
2(pu+pd)

2 = 1
2k

2 = 1
2m

2
W in (32) and obtain:

1

4 |Ed ~pu − Eu ~pd|
=

1

2m2
W

. (33)

We keep this in mind and address the delta function in (31). We start with

splitting up the four-vector delta function:

δ(4)(p+ p′ − k) = δ(0)(p0 + p′0 − k0) · δ(3)(~p+ ~p ′ − ~k). (34)

From δ(3)(~p+ ~p ′ − ~k) we sustain that:

k0 = Ek =

√
~k2 +m2

W =

√
(����~pu + ~pd)

2 +m2
W = m2

W . (35)

Here we assumed the center of mass frame so that the initial momenta have

opposite signs and cancel each other out. We also know that in the center of mass

frame it is p0
u + p0

d = Eu + Ed ≡ 2E ≡ Ecm =
√
s. Using this and equation (35)

we obtain for δ(0)(p0 + p′0 − k0):

δ(0)(p0 + p′0 − k0) = δ(0)(p0
u + p0

d − k0) = δ(
√
s−mW ). (36)

We insert the simplifications (33), (36) and the result for the matrix element from

(29) in equation (31):

dσ̂ =
1

2m2
W

(
d3k

(2π)3
· 1

2EW

)
g2

12
cos2 θC ·m2

W (2π)4 δ(3)(~p+ ~p ′ − ~k) δ(0)(p0
u + p0

d − k0)

= π
g2

12
cos2 θC d

3k
1

2EW
δ(3)(~p+ ~p ′ − ~k) δ(0)(p0

u + p0
d − k0). (37)

In order to obtain an expression for the cross section σ we integrate over d3k:

σ̂
(
u d̄ → W+

)
=
g2

12
π · cos2 θC

∫
d3k

1

2EW
δ(3)(~p+ ~p ′ − ~k) δ(0)(p0

u + p0
d − k0)

=
g2

12
π · cos2 θC

1

2mW
δ(
√
s−mW ) (38)

=
g2

12
π · cos2 θC δ(s−m2

W ). (39)
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Using the following relation for δ-functions [6], we can transform (38) into (39):

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

with g(xi) = 0 and g′(xi) 6= 0, (40)

using g(x) =
√
s −mW , g(x) = 0 →

√
s −mW = 0 → s = m2

W and g′(s) = 1
2
√
s

we obtain:

δ(
√
s−mW ) =

∑
i

δ(s− si
g′(si)

= 2mW δ(s−m2
W ) (41)

The result for σ̂ in (39) can be validated e.g. in the ‘pink book’ [12, p.313].

2.5 Analytical and Numerical results for σ
(
ud̄ → W+

)
The values we use for the calcultaion should match the values MadGraph uses as

well as current experimental limits. We will use:

cos θC = 0.97425 ± 0.00022 [4]

g2 = 4
√

2GFm
2
W

GF = 1.16639× 10−5 GeV−2

mW = (80.385(15) ± 1.9× 105) GeV [4]

This yields:

σ̂
(
u d̄ → W+

)
=

√
2

3
π cos2 θC GF m

2
W δ(s−m2

W )

= 0.105936 δ(s−m2
W ). (42)

It is obvious that this cannot be the final result since it still has a δ-function.

This is due to the fact that - as said in the previous section - we ‘collided’ solitary

quarks in this calculation. Thus, we now use the mentioned parton distribution

functions. A parton distribution function (pdf) specifies the probability of finding

a parton of a certain flavour carrying a fraction x of the hadron’s momentum with
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Q as the energy of the hadron’s interaction. There are different pdf’s depending

on the parton. For more details on pdf’s see e.g. [13] or [8]. In order to obtain

the full cross section, we need to convolve (42) with these parton distribution

functions for u and d quarks, see e.g. [12, pp.301]. :

σ
(
ud̄→W+

)
=

∫ 1

0
dx1

∫ 1

0
dx2 fu(x1) fd̄(x2) ˆsigma

(
ud̄→W+

)
=

∫ 1

0
dx1

∫ 1

0
dx2 fu(x1) fd̄(x2) 0.105936 δ(s−m2

W ). (43)

We use the substitution s = x1 x2 s
′ [12, p.303], where s is the squared energy in

the δ-function above, Q = s′ is the squared energy for the complete collision, here

s′ = (14 TeV)2 and x1, x2 describe the momentum distribution of the quarks.

σ
(
ud̄→W+

)
= 0.105936

∫ 1

0
dx1

∫ 1

0
dx2 fu(x1) fd̄(x2) δ

(
x1 x2 s

′ −m2
W

)
= 0.105936

∫ 1

0
dx1

∫ 1

0
dx2 fu(x1) fd̄(x2)

1

x2 s′
δ

(
x1 −

m2
W

x2 s′

)
= 0.105936

∫ 1

0
dx2 fu

(
m2
W

x2 s′

)
fd̄(x2)

1

x2 s′
. (44)

Until now we used natural units (c = ~ = 1). For the conversion between the

natural units and SI units the following applies:

1

GeV2 =
~2 c2

GeV2 =

(
6.582 GeV s · 2.998 m

s

GeV
× 10−17

)2

= 3.893× 10−32 m2, (45)

using ~ = 6.582× 10−25GeV s and c = 2.998× 108 m
s [4].

The second integration can be conducted with Mathematica and external pdfs,

here the MSTW [14], see appendix C. Finally, we obtain the cross section:

σ
(
u d̄ → W+

)
= 4.0349× 104pb. (46)

Since calculating a more difficult cross section by hand is fairly unhandy, we want

to use MadGraph to calculate the 0νββ cross section. An explanation how to
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use MadGraph can be found in appendix B. MadGraph generates the W boson

production diagrams with:

> generate u d∼ > w+

and then calculates the cross section:

σMG

(
u d̄ → W+

)
= 3.959× 104 ± 53.97 pb. (47)

In the output directory in the file Source/PDF/pdf_list.txt, all pdf’s Mad-

Graph can use are denoted. Per default and in our calculation MadGraph uses

the parton distribution functions CTEQ6L from [15] for this calculation. Using a

different pdf slightly changes the cross section’s value.

Comparing the results (46) and (47) we see that the results are not totally com-

patible with each other within the margin of error but close and that they are of

the same order. This is to be expected since we used different pdfs and this is

satisfactory for our purpose.
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3 Left-right symmetric model

In experiments it has been observed that the boson for the charged weak inter-

action W± only couples to LH particles and RH antiparticles. Thus, this was

imposed in the standard model without further theoretical motivation [8, p.703].

In the thought experiment in section 1.3, we used additional RH particles and

LH antiparticles. To expand the particle content, we will use a minimal left-right

symmetric model (LRSM) to extend the SM. At higher energies than currently in-

vestigated, the LRSM obeys its own gauge symmetry (see appendix A.3). Hence,

the SM gauge symmetry (see A.2) is broken and gives different masses to the LH

and RH gauge bosons W±. For lower energies, the LRSM becomes equal to the

SM.

We still do not know where the neutrino mass has its origin. Since the mass

is of an order far below all other known particle masses - the neutrinos mass is

below one eV while e.g. the electron mass is 511 eV [4] - its source may be some-

thing else than the Higgs mechanism. One solution is the seesaw theory. In the

seesaw theory, the light neutrino gains a small Majorana mass through a heavy

counterpart via Yukawa coupling. The name seesaw refers to the eigenvalues. The

general neutrino mass matrix with Majorana mass M and Dirac mass m is of the

form: (
0 m

m M

)
with M >> m → λ± =

M ±
√
M2 − 4m2

2

If one of the eigenvalues λ± goes up, the other goes down, and vice versa, like on

a seesaw.

There are three different kinds of seesaw types, depending on how the heavy coun-

terpart that gives mass to the neutrino is implemented. Type I uses gauge-singlets,

Type II gauge-triplets - both under SU(2) - and Type III adds the counterpart

itself in form of a fermionic triplet. The latter will be used in this thesis because

it is the one which is most likely to be observable in an LHC process [16].
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3.1 Type III seesaw

In this thesis we will use a Type III seesaw model and calculate a 0νββ cross

section with MadGraph 5 [17]. The model file that will be used for the MadGraph

calculation originated from [18]. Here a minimal realisation of the Type III seesaw

is implemented. This is done in the form of adding fermionic SU(2) triplets,

consisting of two heavy charged Dirac leptons Σ± and a heavy neutral Majorana

lepton Σ0. In addition to the SM we add these triplets to gain neutrinos with

non-vanishing masses. The extra fermions Σ have zero hypercharge Y . Their

interaction beyond the SM is denoted by the Lagrangian [19]:

L = Tr
[
Σ̄i /DΣ

]
− 1

2

[
Σ̄MΣΣc + Σ̄cM∗ΣΣ

]
− φ̃†Σ̄

√
2YΣL− L̄

√
2YΣ

†Σφ̃ , (48)

with the lepton doublets L ≡ (ν, l)T , the scalar field φ ≡ (φ+, φ0)T ≡ (φ+, (v +

H + iη)/
√

2)T , φ̃ ≡ iτ2φ
∗, ΣC ≡ CΣ̄T with the charge conjugation operator C

and with, for each ferminonic triplet,

Σ =

(
Σ0/
√

2 Σ+

Σ− −Σ0/
√

2

)
, ΣC =

(
Σ0c/
√

2 Σ−c

Σ+c −Σ0c/
√

2

)
,

Dµ = ∂µ − i
√

2g

(
W 3
µ/
√

2 W+
µ

W−µ −W 3
µ/
√

2

)
. (49)

For a more detailed description of the model see [19]. Interesting for the purpose

of this thesis is the mass of the heavy neutral Majorana lepton Σ0. We use a

simplified model with just one triplet [19, p.4]. With this assumption the Yukawa

couplings matrix becomes a 1×3 vector: YΣ = (YΣe YΣµ YΣτ ). The mass matrix

MΣ reduces to a scalar. We also assume that all parameters are real. This means

we do not consider the phase of the Yukawa couplings or those of the PMNS

matrix. The PMNS (Pontecorvo–Maki–Nakagawa–Sakata) matrix is the mixing

matrix equivalent for the flavour and mass eigenstates mixing of neutrinos, for

more see e.g. [20].
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4 Limits and Experiments

The half-life of the neutrinoless double beta decay and the neutrino masses are

interdependent according to [16]:

1

T
1/2
0ν

= G0ν(Q,Z)
∣∣M0ν

∣∣2 |η|2 , (50)

with G0ν(Q,Z) the phase space factor and M0ν the Nuclear Matrix Element

(NME). η is a dimensionless particle physics parameter, defined as [16]:

η =

(
mW

mWR

)4 mp

〈mΣ0〉
, (51)

with the proton mass mp, the mass of the common (LH) W± boson mW , the mass

of the RH W boson mWR
, added through the LRSM, and the mass of the heavy

neutrino mΣ0 . As seen in (50), the mass of the heavy neutrino corresponds to

its decay width. A recent and improved calculation for the phase space factors of

2νββ and 0νββ can be found in [21] or [22]. Current values for Nuclear Matrix

Elements are presented in [23]. In the next subsection, we will discuss the vari-

ous experiments on double beta decay half-lives and present their results. In the

subsequent subsection, we discuss the mass of the heavy charged neutrino.

4.1 Experimental limits on double beta decay half-life

There are several experiments currently taking data on double beta decay. The

dominant difficulty is the rareness of both kinds of double beta decay which can

easily hide in other radiation. Therefore the general setup is very similar among

most experiments. The elements used in 0νββ experiments are:

48Ca, 76Ge, 82Se, 96Zr, 100Mo, 100Mo - 100Ru (0+
1 ), 116Cd, 130Te, 150Nd, 150Nd -

150Sm(0+
1 ) and 238U.

The sample of one of these materials is located in a large water tank. The tank is

heavily shielded with lead against background radiation. To minimize the chance

of radiation from space coming through, most of the laboratories are underground.
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Table 1: Half-life and NME values for two-neutrino double beta decay 2νββ.
Table taken from [24].

Also the perturbation from inside may be reduced. Hence, the material in use

has to be highly purified and is enriched with the double beta decaying isotope.

The half-life measurement is performed as follows: observed events are tested

on whether they are a double beta decay and are counted if they are. From

the decay count and the mass of material the half-life can be calculated. In

the KamLAND-Zen experiment, for example, an event rate of 80.9 ± 0.7 (ton

day)−1 in 129 kg of 136Xe was measured [25, p.5]. This leads to a half-life of

T 2ν
1/2 = 2.38 ± 0.02 (stat) ± 0.14 (sys) × 1021 yr. In [24], all available exper-

imental results up to March 2010 were analyzed and summed up within their

compatibilities. The resulting half-lives with errors and the NMEs based on these
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half-lives, are presented in table 1. Even more recent values from GERDA can be

found in [26].

In 2001 a part of the Heidelberg-Moscow collaboration claimed the actual ob-

servation of a neutrinoless double beta decay [27]. The claim was disputed by

the rest of the collaboration as well as other physicists and can be safely ignored

[28]. From the observation of zero events, one can at least derive a lower limit

for the half-life. For example, no observation of a decay in the 129 kg 136Xe in

KamLAND-Zen, results in a half life of minimum T 0ν
1/2 > 5.7 ×1024 yr [25]. The

most recent limit from GERDA [26] is the minimum half life T 0ν
1/2 > 3 ×1025 yr.

4.2 Limits on the neutrino masses

In this section we want to narrow down the mass of the heavy neutral neutrino

mΣ0 . Lower bounds on this mass have been determined from experiments e.g. by

the CMS collaboration [29]. The data used was recorded at the LHC in 2011, it

corresponds to an integrated luminosity of 4.9 fb−1 from proton-proton collisions

at
√
s = 7 TeV. Using our Type III seesaw model the collaboration concluded

lower limits ranging from 180 − 200 GeV. Hence, we obtain mΣ0 > 180 GeV.

These bound holds if one or more of the mixing parameters Ve, Vµ, Vτ is larger

than 10−6 [29]. We will keep this in mind for the next chapter.

It is also possible to calculate a limit using equation (50) and the numbers provided

in the papers stated at the beginning of this section. Permuting (50) yields:

〈mΣ0〉 =

√
T

1/2
0ν G0νM0ν ·

(
mW

mWR

)4

mp (52)

For the calculation we will use the experimental values for Germanium-76 since

the most recent half life values have been obtained for this element.
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T
1/2
0ν > 3.0× 1025 yr [26]

G0ν = 2.34× 10−15 yr−1 [22]

M0ν = 32.6− 48.1 [23]

mW = 80.385 GeV [4]

mp = 0.938 GeV [4]

mWR
< 2.5× 103 GeV [30]

These numbers provide the lower bound mΣ0 > 125, 348 GeV. The bound on the

RH boson mass mWR
is the lowest possible bound obtained from LHC results.

Lower masses have been excluded since otherwise it would have been already

observed. We choose the RH boson mass to meet this lower bound in order to

obtain the strictest limit on the heavy neutrino mass mΣ0 . However, this limit is

still lower than the one from the CMS data. We will discuss the consequences of

different neutrino masses on the result of the cross section calculation in the next

chapter.
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5 Cross section of pp → Σ0 → jje−e−

In this section, a cross section of neutrinoless double beta decay will be calculated

using a Type III seesaw model [19] with a heavy neutrino Σ0 in MadGraph5 [17].

In all the runs, MadGraph calculates the cross section with a total of 10000 events

and the LHC center of mass energy
√
s = 14 TeV. This value can be changed in

the run card but we will not do so. The collider mode e.g. pp, e+e− can also

be changed there. The equivalent of the process pp → Σ0 → jje−e− as a

MadGraph input is:

> generate p p > tr0 > j j e- e-

An unmodified run of the process using the Seesaw Model from [19] leads to a zero

cross section. This is due to the fact that the parameters yme and Ve have been

set to zero. Both parameters contribute to the value of a coupling which should

be non-zero in order to obtain a cross section. The parameter yme - denoted as

‘electron yukawa mass’ in the .fr file - corresponds to the electron mass in GeV,

viz me = 5.11× 10−4 [4]. Hence, we set yme = 5.11e-4. Concerning the mixing

parameter Ve - the ‘electron mixing’ according to the .fr file - bounds with respect

to the model are presented in [19, p.10]:

|Ve| < 5.5× 10−2

|Vµ| < 6.3× 10−2

|Vτ | < 6.3× 10−2

|VeVµ| < 1.7× 10−7 (53)

|VeVτ | < 4.2× 10−4 (54)

|VµVτ | < 4.9× 10−4 (55)

For now, the value of the cross section depends mostly on the parameter Ve. In

order to obtain the maximum event count, we vary its value and then change Vµ

and Vτ accordingly. The largest cross section arises from the maximum value for

Ve. Thus, we set Ve = 5.5e-2. From this value and (53)-(55) the bounds on the
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other parameters are determined as follows:

Vµ < 3.09× 10−6

Vτ < 7.64× 10−3

These assumptions yield a cross section of 1.731× 10−5 ± 6.401× 10−8 pb. The

number of events # to expect with given cross section σ and luminosity L can be

calculated via # = L · σ. Thus, our cross section would correspond to 0.4 events

in the LHC’s record data collection of L = 23 fb−1 in 2012 1.

The remaining parameter we need to vary is the mass of the heavy uncharged

neutrino. From LHC data using the same boundary conditions as we do, a lower

limit of 180-210 GeV was derived [29]. As mentioned (before), this bound is only

valid if at least one of the mixing parameter is larger than 10−6 which is indeed

the case. Thus, from the calculation in the previous section we obtained the limit

mΣ0 > 125, 348 GeV which is a little below the CMS limit. In the original file,

the mass is set to mtr0 = 100.8 GeV.

Changing the mass to mtr0 = 210 GeV, in order to meet the limit given by the

CMS data, yields the cross section of 4.036 × 10−5 ± 1.754 × 10−7 pb. This

corresponds to 1 event per year.

There was no upper limit to be found so we could increase the mass as far as

we want to. Doing so however just yields smaller cross sections. Thus, we ob-

tained the largest cross section with mΣ0 = 210 GeV and Ve = 5.5× 10−2.

1http://lpc.web.cern.ch/lpc/lumiplots_2012.htm

 http://lpc.web.cern.ch/lpc/lumiplots_2012.htm
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6 Conclusion

We aimed to give a number of 0νββ events that would be visible at the LHC

using two proton beams with a center of mass energy of
√
s=14 TeV. Therefore

we assumed a Type III seesaw model. Within the bounds from the model and

the bounds yielded from recent experimental results, we varied the parameters to

obtain a most optimal number of events. With these values we obtained a cross

section of 4.036× 10−5 ± 1.754× 10−7 pb. Assuming the LHC has a collection

of data of 23fb−1, this corresponds to one observable event per year. This result

is not significant.

To obtain a more meaningful result we could await an increase in the LHC’s

luminosity, a project which would take several decades. Another point of discus-

sion are the assumptions made in the course of this thesis. Especially replacing

the Higgs mechanism with a seesaw theory is not necessarily the correct approach.

In addition, the type III seesaw is a very specific model; we added a triplet of new

particles and neglected the Yukawa coupling phases. And assuming the model

holds, there are still pretty large uncertainties in values used for the calculation,

for example in the NME or the mass of the heavy neutrino.

As there is a multitude of conceiveable models - see [31, table 14] for an overview -

the amount of time one wants to spend on calculating cross sections can be chosen

at will. Hence, a more promising project could be improving current 0νββ ex-

periments in order to actually observe the decay. This would prove the Majorana

nature of the neutrino. Nonetheless, this would still leave us with the need for a

proper theoretical discription of the whole process.
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Appendix

A Gauge Theory and Symmetries

Emmy Noether’s first theorem states that every continuous symmetry of a physi-

cal system has a conservation law which corresponds to it [32]. This awareness is

used in the Lagrangian formulation. The knowledge of a certain conservation law

of a physical system, combined with the Hamiltonian principle, reduces the de-

grees of freedom in this system and simplifies the construction of the Lagrangian.

The other way around with a given Lagrangian, it is easy to identify the conserved

quantities from the invariance of the associated currents under transformations of

the action. For a deeper insight in this topic, use for example [33]. These symme-

tries under transformation can be ‘local’ or ‘global’. A local symmetry only exists

at a certain point, while a global one subsists at every point in the space-time.

A continuous group of transformations under which a Lagrangian is invariant, is

called a gauge group.

A.1 Gauge Groups

From the various gauge groups existing in the different models of modern physics,

we will focus on those used in this thesis. These are the ‘unitary group’ U(N)

and the ‘special unitary group’ SU(N). Unitary means e.g. for a matrix that its

inverse is equal to its hermitian conjugated matrix U−1 = U †.

The unitary group U(N) - fomerly hyperorthogonal group - is a real Lie-group

of the dimension N2. The dimension of a group determines the number of gauge

bosons needed. U(N) consists of unitary N ×N matrices. We only use the simple

case N = 1. U(1) is called the circle group since the group consists of all the com-

plex numbers with an absolute value of 1 under matrix multiplication operations.

The special unitary group SU(N) is a subgroup of the unitary group U(N) and

a Lie-group of the dimension N2 − 1. The SU(N) consists of unitary N × N

matrices with complex entries and the Jacobian 1.
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A.2 Standard Model Gauge Group

The standard Model gauge group is GSM = SU(3)QCD × SU(2)I × U(1)Y [2].

It consists of the group SU(3) from quantum chromodynamics with eight gauge

bosons (dimension of SU(3) is N2−1 = 8), the gluons. The group SU(2)I×U(1)Y

originates from the electroweak interaction. ‘I’ denotes the weak Isospin and ‘Y’

the hypercharge. Together they yield an additional four gauge bosons: The pho-

ton from U(1)Y and the three (dimension of SU(2) is N2−1 = 3) weak interaction

bosons Z,W± from SU(2)I .

A.3 LR-symmetric Model Gauge Groups

The left-right symmetric model is an extension to the SM. In the low energy

limit it becomes the SM. At high energies it breaks the SM symmetry from

the electroweak interaction. This can be seen from its gauge group GLR =

SU(3)QCD × SU(2)L × SU(2)R × U(1)B−L with different couplings gR 6= gL for

right- and left-handed particles.
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B MadGraph

MadGraph (MG) [17] is a program to generate matrix elements. It is usable

directly on the homepage http://madgraph.phys.ucl.ac.be/ or can be down-

loaded from the launchpad at https:/launchpad.net/madgraph5. In both cases

it is necessary to have certain programs installed or upgraded to the specific ver-

sions MG uses. A list of these depending on the operating system in use can be

found on the tutorial pages e.g.:

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/SchoolNTU.

B.1 How to use MadGraph

From the directory where MG5 is saved, the program can be started by typing:

> ./bin/mg5

in a terminal. The startup output should look like this:

********************************************************

*

* W E L C O M E to M A D G R A P H 5

*

*

* * *

* * * * *

* * * * * 5 * * * *

* * * * *

* * *

*

* VERSION 1.5.11 2013 -06 -21

*

* The MadGraph Development Team - Please visit us at

* https :// server06.fynu.ucl.ac.be/projects/madgraph

*

* Type ’help ’ for in-line help.

* Type ’tutorial ’ to learn how MG5 works

*

********************************************************
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load MG5 configuration from input/mg5_configuration.txt

Using default text editor "vi". Set another one in ./

input/mg5_configuration.txt

Using default eps viewer "evince ". Set another one in ./

input/mg5_configuration.txt

Using default web browser "firefox ". Set another one in

./input/mg5_configuration.txt

Checking if MG5 is up-to-date ... (takes up to 2s)

No new version of MG5 available

Loading default model: sm

INFO: load particles

INFO: load vertices

INFO: Restrict model sm with file models/sm/

restrict_default.dat .

INFO: Run "set stdout_level DEBUG" before import for

more information.

INFO: Change particles name to pass to MG5 convention

Defined multiparticle p = g u c d s u~ c~ d~ s~

Defined multiparticle j = g u c d s u~ c~ d~ s~

Defined multiparticle l+ = e+ mu+

Defined multiparticle l- = e- mu-

Defined multiparticle vl = ve vm vt

Defined multiparticle vl~ = ve~ vm~ vt~

Defined multiparticle all = g u c d s u~ c~ d~ s~ a ve

vm vt e- mu- ve~ vm~ vt~ e+ mu+ t b t~ b~ z w+ h w-

ta- ta+

There are several models already implemented in MadGraph. These are all
saved in the directory called “models” within the MadGraph5 directory. Every
new model has to be saved in this directory as well. The TypeIII SeeSaw file
is dowloaded from http://feynrules.irmp.ucl.ac.be/wiki/TypeIIISeeSaw.
From this file the model can be generated using FeynRules. Then the model
can be saved in the “models” directory under a name e.g. typeIII. To import the
new model type:

> import model typeIII

or

> import typeIII

Both commands import the model correctly. In the latter MG guesses that
“typeIII” is a model, so it works only for unique names.
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INFO: load particles

INFO: load vertices

INFO: Change particles name to pass to MG5 convention

impossible to set default multiparticles vl because No

particle ve in model

impossible to set default multiparticles vl~ because No

particle ve~ in model

Kept definitions of multiparticles l- / j / l+ / p

unchanged

Removed obsolete multiparticles all / vl / vl~

Defined multiparticle all = g a v1 v2 v3 u c t d s b u~

c~ t~ d~ s~ b~ z w+ h w- tr0 e- mu- ta- tr- e+ mu+ ta

+ tr+

The MG output ‘impossible to set default multiparticles vl because No

particle ve in model’ seems like an error message but its nothing to worry

about. This just means that the new neutrino triplet is implemented with new

particle (PDG) numbers, while the old neutrinos are deleted. Hence, MG does not

find the neutrinos where it expects them to be and therefore deletes the obsolete

(anti) neutrino.

To generate a simple process, just the three commands in the following are needed:

> generate p p > u d

> output NAME

> launch

The first command states which process you want to calculate. In the newer

MadGraph versions, the particles have to be separated by a blank space. In the

last output line above, all implemented particle names are listed. The sign “>”

separates initial and final particles. One initial particle means a decay. With two

initial particles MadGraph calculate the collision of these two. There are several

commands to specify how exactly all branches of all decays should look like, but

those will not be stated here.

The output command assigns the directory“NAME”to save the calculation there.

The command launch initiates the actual calculation. The result is stated in a
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crossx.html file in the “NAME” directory. If you open this file during the calcula-

tion, the progress is listed there.

B.2 Example

In this section we demonstrate the usage of MadGraph with the example process
ud̄ → W+. First we start MadGraph as shown in the section above. In the last
lines of the startup MadGraph provides a list of the particle content. For the
example process we type:

> generate u d > w+

MadGraph’s output should look like:

INFO: Checking for minimal orders which gives processes.

INFO: Please specify coupling orders to bypass this step

.

INFO: Trying process: u d~ > w+ WEIGHTED =2

INFO: Process has 1 diagrams

1 processes with 1 diagrams generated in 0.026 s

Total: 1 processes with 1 diagrams

Now we assign a directory to save and launch the process.

> output EXAMPLE

> launch

After the launch command MadGraph will request some parameters concern-
ing the calculation. We just enter the default values, which let MG choose the
appropriate options. While calculating MadGraph states the current process:

Generating 10000 events with run name run_01

survey run_01

compile directory

Using random number seed offset = 21

Running Survey

Creating Jobs

Working on SubProcesses

P0_qq_wp

Idle: 0 Running: 0 Finish: 1

End survey
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refine 10000

Creating Jobs

Refine results to 10000

P0_qq_wp

Idle: 10 Running: 2 Finish: 0

Idle: 7 Running: 2 Finish: 3

Idle: 4 Running: 2 Finish: 6

Idle: 1 Running: 2 Finish: 9

Combining runs

finish refine

refine 10000

Creating Jobs

Refine results to 10000

P0_qq_wp

Combining runs

finish refine

combine_events

Combining Events

=== Results Summary for run: run_01 tag: tag_1 ===

Cross -section : 3.959e+04 +- 53.97 pb

Nb of events : 10000

Creating Plots for parton level

End Plots for parton level

store_events

Storing parton level results

End Parton

quit

more information in /home/laura/MadGraph5/EXAMPLE/index.

html

Here it is stated that MadGraph uses 10000 events for the calculation. This is

the default value and can be changed in the run card. The center of mass energy

with the default value
√
s = 14 TeV and collider mode pp collision are also stored

in the run card. We will not change these values.
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B.3 Changes in MadGraph

If a zero cross section is encountered, this may be because of a zero coupling. It

is possible to query interactions from MG:

> display interactions w- e+ tr0

Interactions 103 : e+ tr0 w- has the following property:

{

’id’: 103,

’particles’: [-11,8000018,-24],

’color’: [1 ],

’lorentz’: [’FFV2’, ’FFV3’],

’couplings’: {(0, 1): ’GC_187’, (0, 0): ’GC_171’},

’orders’: {’QED’: 1}

}

Now we have to search for the couplings GC_171 and GC_187 in the file ‘cou-

plings.py’ in the model directory. In the file we find:

GC\_171 = Coupling(name = ’GC\_171’,\\

value = ’(ee*complex(0,1)*gCCL14)/(sw*cmath.sqrt(2))’,

order = {’QED’:1})

GC_187 = Coupling(name = ’GC_187’,

value = ’(ee*complex(0,1)*gCCR14)/sw’,

order = {’QED’:1})

We do not change anything here and continue with searching for gCCR14 and

gCCL14. This factor can be found in the file ‘parameters.py’:

gCCL14 = Parameter(name = ’gCCL14’,

nature = ’internal’,

type = ’real’,

value = ’-Ve’,

texname = ’\\text{gCCL14}’)
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gCCR14 = Parameter(name = ’gCCR14’,

nature = ’internal’,

type = ’real’,

value = ’-((Ve*yme*cmath.sqrt(2))/mtr)’,

texname = ’\\text{gCCR14}’)

Again we do not change anything here but search for Ve,yme and mtr. We find

these also in the file ‘parameter.py’ in the model’s directory.

Ve = Parameter(name = ’Ve’,

nature = ’external’,

type = ’real’,

value = 0,

texname = ’\\text{Ve}’,

lhablock = ’MIXING’,

lhacode = [ 1 ])

yme = Parameter(name = ’yme’,

nature = ’external’,

type = ’real’,

value = 0,

texname = ’\\text{yme}’,

lhablock = ’YUKAWA’,

lhacode = [ 13 ])

mtr = Parameter(name = ’mtr’,

nature = ’external’,

type = ’real’,

value = 100.8,

texname = ’\\text{mtr}’,

lhablock = ’NEWMASSES’,

lhacode = [ 4 ])

We will change these parameters. The values changed in the latter file are stated

in the thesis.
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C Mathematica

Mathematica is a computational software tool developed by Wolfram Research.

It can be obtained from their website 2. We use the Martin-Stirling-Thorne-Watt

Parton Distribution Functions [14]. All of its files, including an example, can be

downloaded from this page 3. The implemented pdfs have the form:

> xf[ih,x,q,f]

They return x times the momentum fraction x for a certain flavour f. The pa-

rameter ih denotes the set of eigenvectors and q the scale in GeV. According to

the PDG convention for flavour, f=-1 means d̄ and f=2 means u quark. We use

the central eigenvector set ih=0 and a factorization scale of q=91, roughly equal

to the Z mass. Using this we initialise the pdfs by typing:

> pdfu[x1_] := xf[0, x1, 91, 2]/x1

> pdfdbar[x1_] := xf[0, x1, 91, -1]/x1

We can now rewrite the underbraced part of equation (44)

σ
(
ud̄→W+

)
= 0.105936

∫ 1

0
dx2 fu

(
m2
W

x2 s′

)
fd̄(x2)

1

x2 s′︸ ︷︷ ︸
into the command:

> pdf[x2_] := pdfu[mw^2/s/x2]*pdfdbar[x2]*1/x2*1/s /. params

The /. params part refers to a parameter array consisting of the known values

we use. We integrate from the lower bound lowerbound = mw^/s /. params

using the command:

> integration = NIntgrate[pdf[x2], { x2, lowerbound, 1. },

MaxRecursion → 100]

The command NIntegrate gives a numerical approximation. This approximated

result multiplied with the constant factor from (44) and the factor from the unit

conversion (45) yields: 40349 pb.

2http://www.wolfram.com/mathematica/
3http://mstwpdf.hepforge.org/code/code.html

http://www.wolfram.com/mathematica/
 http://mstwpdf.hepforge.org/code/code.html
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